

PB-003-1016008

Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2020

Chemistry : C - 603

(Physical Chemistry & Analytical Chemistry)

Faculty Code : 003

Subject Code : 1016008

Time : $2\frac{1}{2}$ Hours]

[Total Marks : 70]

Instructions : (1) This question paper contains five questions.
(2) All questions are compulsory.
(3) Figures to the right indicate full marks.

1	(a)	Answer the following questions :	4
	(1)	Define Activity Co-efficient.	
	(2)	State Nernst Theorem.	
	(3)	Define Perfect Crystal.	
	(4)	Write the mathematical form of Debye Huckel Limiting Law.	
	(b)	Answer any one of the following questions :	2
	(1)	Calculate ionic strength of 0.001M AlCl_3 solution.	
	(2)	Write the applications of 3rd law of thermodynamics.	
	(c)	Answer any one of the following questions :	3
	(1)	State any two statements of 3 rd law of thermodynamics.	
	(2)	Short note on ionic strength.	
	(d)	Answer any one of the following questions :	5
	(1)	Discuss EMF method for determination of activity coefficient.	
	(2)	Derive $S_T = Cp/3$.	

2 (a) Answer the following questions : 4

- (1) Write the oxidation and reduction reaction of hydrogen electrode.
- (2) The cell is Pt, H_2 (P1)/ H^+ ion solution/ H_2 (P2), Pt. Name the type of concentration cell.
- (3) Define Liquid Junction Potential.
- (4) If concentration of cell is 3.3×10^{-6} , what is pH value ?

(b) Answer any **one** of the following questions : 2

- (1) The valency of mercuric ion is 2. Explain using EMF measurement.
- (2) Explain electrolyte concentration cell using an example.

(c) Answer any **one** of the following questions : 3

- (1) Explain determination of dissociation constant of weak acid using EMF measurement.
- (2) Determine pH of the cell: Pt, $H_{2(g)}$ / H^{+1} sol. // Sat. KCl, Hg_2Cl_2 , Hg . EMF of calomel electrode is 0.242v and the EMF of the cell is 0.642v.

(d) Answer any **one** of the following questions : 5

- (1) Explain determination of degree of hydrolysis using emf measurement.
- (2) Derive $E = RT/F \ln a_2/a_1$.

3 (a) Answer the following questions : 4

- (1) Give examples of extensive properties.
- (2) Write the equation of Raoult's law and Nernst distribution law.
- (3) Define Accuracy.
- (4) Give the only formula of standard deviation.

(b) Answer any **one** of the following questions : 2

- (1) Explain Partial Molar Property.
- (2) Write note on student T-test.

(c) Answer any **one** of the following questions : **3**

- (1) Derive Henry's law using chemical potential.
- (2) Write short note on significant figure.

(d) Answer any **one** of the following questions : **5**

- (1) Derive Gibbs Duhem equation.
- (2) Explain methods of minimization of errors.

4 (a) Answer the following questions : **4**

- (1) Alumina is Strong adsorbent, True or False ?
- (2) Define Rf value.
- (3) Which method is best for the preparation of TLC plate ?
- (4) Define Adsorption chromatography.

(b) Answer any **one** of the following questions : **2**

- (1) Write uses of column chromatography.
- (2) Give any four advantages of TLC.

(c) Answer any **one** of the following questions : **3**

- (1) Explain separation of α , β , γ carotene from carrot by chromatography.
- (2) What is ion exchange chromatography? Write note on Cation exchange chromatography.

(d) Answer any **one** of the following questions : **5**

- (1) Write note on Gas chromatography.
- (2) Write note on Thin layer chromatography.

5 (a) Answer the following : **4**

- (1) Give chemical formula of Magnesia mixture.
- (2) Define soluble salt.
- (3) Draw only potentiometric titration curve of monobasic acid and strong base.
- (4) What is pH metric titration.

(b) Answer any **one** of the following questions : **2**

- (1) Discuss any one method for the separation of Cl^- , Br^- and I^-
- (2) Explain the principle of potentiometric titration.

(c) Answer any **one** of the following questions : **3**

- (1) Explain separation of Cu^{+2} and Cd^{+2} .
- (2) Discuss Argentometric titration by potentiometric titration.

(d) Answer any **one** of the following questions : **5**

- (1) Explain separation of CO_3^{2-} , SO_3^{2-} and S^{2-} .
- (2) What is Redox titration? Discuss redox titration of $\text{FeSO}_4 \rightarrow \text{CeSO}_4$ by potentiometric titration.
